
COMMENTARY

Dynamic, Distributed,
Platform Independent

OR/MS Applications—
A Network Perspective

GORDON H. BRADLEY y Operations Research Department,
Naval Postgraduate School, Monterey, CA 93943; Email:

bradley@nps.navy.mil

ARNOLD H. BUSS y Operations Research Department, Naval
Postgraduate School, Monterey, CA 93943; Email:

bussa@or.nps.navy.mil

W e are in the midst of, or perhaps at the beginning of, the
development of a new concept of computing and computers
that will significantly affect OR/MS. This development is
summarized in the phrase “the network is the computer.”
The focus and use is not an individual computer and its
resources but a network of computers and resources, indeed,
a network of all computers. This concept is closely tied to an
evolving view about what a computer is; we now have an
exploding number of ubiquitous devices with computa-
tional capacity, such as credit cards, cellular phones, and TV
set-top boxes. We need to anticipate the impact of millions
and then billions of programmable devices that are intercon-
nected on a high bandwidth network accessible by millions
and then billions of individuals. The sudden and fast mov-
ing development of computer networks and the wide dis-
tribution of powerful computing devices is revolutionizing
not just OR/MS, but commerce, communications, and in-
deed, nearly all aspects of society.

The feature article by Bhargava and Krishnan (BK) is an
important contribution to an unfolding dialogue about how
OR/MS will evolve and redefine itself as computer net-
works emerge as the environment of choice for many appli-
cations. The question is not just how existing products will
be distributed and accessed on the network, but how
OR/MS products and ideas will be used, what new products
will be developed, and how OR/MS will be reshaped by the
changing environment and the new concepts.

As its title indicates, the BK article is focused on the use of
the Web and browsers rather than on the larger use of
computer networks. This viewpoint is based on their expe-

rience with DecisionNet[1] that they and others developed
over the last several years. DecisionNet is an inspired, well-
developed application that uses the Web and browsers to
effectively deliver OR/MS applications to a wider audience.
The authors have developed a market-based approach that
uses a software broker to connect producers with consumers
of OR/MS applications. DecisionNet effectively achieves
three objectives: (1) it makes applications visible to potential
consumers, (2) it avoids moving (porting) applications to the
(variety) of consumer computing environments, and (3) it
makes it easy for consumers to submit data to the producer’s
computer.

There are OR/MS applications that use computer net-
works without necessarily using the Web or browsers. Since
1996, we have been working with graduate students to
develop a number of network-based OR/MS applications.
Although these applications operate over the Internet, most
do not use the Web or a browser. We have found that Java
applications (together with RMI or CORBA), rather than
Java applets and other Web technologies, provide a better
platform for building our network-based systems. Because
we have specific problem domains with their own issues, we
have different experiences and a somewhat different per-
spective and emphasis than that discussed in this feature
article. We will give a short description of one of our systems
and then relate our experience to the issues discussed in the
BK article. This should be useful to others working on net-
work applications.

1. Map-Based Planning on the Internet
The problem domains we address include military planning
systems for contemporary and future needs that utilize the
advanced information technologies that will be widely avail-
able in the early part of the next century. High-level Depart-
ment of Defense long-range studies, such as Joint Vision
2010, New World Vistas, Army XXI, and Army After Next,
have specified a set of requirements for these planning sys-
tems that cannot be achieved with existing technologies. The
post Cold War era is characterized by a wider range of
possible military missions than the Cold War era, from
full-scale war to small peacekeeping missions, and by
greater uncertainty about when and where military re-
sponse will be required. This has generated requirements for
flexible planning tools that support rapid response to situ-
ations whose details cannot be anticipated. These require-
ments are extensive. The planning resources (people, data,
computers) will be distributed over a network that has a
range of computers (from supercomputers to cellular
phones) and different software (operating systems, data-
bases). The decision cycles will be much shorter, meaning
the planning systems need to work much faster with less
time to make and review plans. Furthermore, there is a
requirement to provide automatic monitoring of the plan-
ning process. The problems faced by planners will be less
predictable than in the past, so the systems must be more
flexible to address situations the designers cannot anticipate.
The systems must have an open architecture that allows
additional capabilities to be added without disruption. Leg-

384
INFORMS Journal on Computing 0899-1499y 98 y1004-0384 $05.00
Vol. 10, No. 4, Fall 1998 © 1998 INFORMS

acy planning systems are too static, monolithic, and inflex-
ible to meet these requirements. Current efforts to integrate
legacy planning tools are an improvement, but even when
these efforts are brought to fruition, the results will not be
sufficiently interoperable, platform independent, or extensi-
ble to meet the challenges of military decision making out-
lined above. As demanding as the individual requirements
are, advanced planning systems must incorporate all these
capabilities in an integrated system.

We will describe our most recent application that was
done with Arent Arntzen, Allan Bilyeu, and Leroy Jackson
and is described in Bilyeu.[2] The system is demonstrated
with a particularly demanding scenario of a special forces
operation that involves Air Force units on the ground in one
country, Naval units on a ship, and Army units in a second
country working with UN forces from several different
countries. The planning must be coordinated among all the
forces and with other government agencies, and it is not
possible to do the planning in a single location.

We chose Java as the programming language and imple-
mented the required components as Java applications. Un-
like Java applets that execute within a browser, Java appli-
cations execute as processes on the computer like any other
application. The Internet protocols are embedded in the Java
language itself, so content (for example, data, images) can be
loaded from either local resources or over the Internet in a
way that is relatively seamless. A Java application can do
anything a Java applet can (load an image, invoke a common
gateway interface script, etc.), but an application does not
require a security policy as restrictive as that imposed on
applets. The next version of Java, JDK 1.2, will ease the
security limitations placed on applets. However, because
applets are downloaded over the Web and executed without
any action by the viewer, strict security measures are nec-
essary to protect the viewer’s computer from harmful ac-
tions.

Our application supports map-based military planning
using network algorithms. The networks are created on the
fly from disparate sources of data. Briefly, our system loads
images (maps and satellite pictures), overlays (containing
networks), and algorithms that operate on the networks in
the overlays. The dynamic capabilities of the system are best
shown by considering how algorithms are located, loaded,
and executed. The user selects one of the networks embed-
ded in an overlay and then selects an algorithm (for exam-
ple, shortest path or max flow) to execute on it. The algo-
rithms are not preloaded; because Java has dynamic loading,
classes are not loaded until they are first used. A class
containing an algorithm can be loaded from the local ma-
chine or over the Internet. Once selected, the system loads
the class and, using the name of the class (a string) and a
process called reflection, determines the names of the algo-
rithms in the class and presents them to the planner. After
the planner selects an algorithm, the system uses reflection
to determine the parameters needed to execute the algo-
rithm (for example, for a shortest path algorithm, the pa-
rameters are a source node and an arc property for the
length). The system presents the planner with a short de-
scription of the algorithm and drop-down menus to select

which of the nodes is the source and which arc property
should be used for the length (there could be several choices,
for example, length via road or length via air). The system
then executes the algorithm and places the solution in the
network. Because the algorithm is loaded dynamically, it
need not be known at compile time or even at the time the
planning session is begun. In an extreme example, an ana-
lyst at a remote location can be writing an algorithm while
the planning is going on and, as soon as it is compiled, it can
be located, loaded into the planning system, and executed
on a network. The general capabilities for dynamic behavior
are built into Java, but it should be noted that some specific
capabilities are achieved only by using the loosely coupled
components architecture that we have developed over the
past year (see Bradley and Buss[3]).

2. Distribution Technologies—RMI and CORBA
The network can be used to distribute work, for example,
sending data to remote algorithms, sending algorithms to
remote data, invoking remote algorithms on remote data,
invoking a method on a remote object, sending data and
algorithms to a remote computer for execution, etc. The
explosion of the Internet has helped spawn a number of
supporting technologies that are inconceivable in the world
of monolithic mainframe computers and stand-alone desk-
top computers. Several competing infrastructures have
arisen for supporting distributed computing, including
CORBA and Java’s remote method invocation (RMI). Al-
though we have used both CORBA and RMI, it appears that
RMI ultimately offers more to support our applications and
designs than does CORBA.

From its early, limited form, Java’s RMI has blossomed
into a rich, full-featured platform for distributed computing.
RMI has most of the features that make CORBA attractive:
an interface definition language (Java’s API itself), a registry
that performs the same functions as CORBA’s object man-
ager and naming service, support for both static remote
binding via stubs and skeletons, and dynamic remote bind-
ing and class loading. RMI also supports such features as
remote garbage collection and threads. Although not as
full-featured as CORBA, RMI is sufficiently advanced to
support most tasks required by the loosely coupled compo-
nents architecture. Furthermore, there is a tremendous ad-
vantage in the fact that the API for remote objects under RMI
is essentially the Java API as well. This avoids writing ap-
plications in two languages, as in CORBA (one being COR-
BA’s interface definition language and the other being the
implementation language). RMI has a registry for the nam-
ing and discovery of remote objects that provides the same
functionality to clients as CORBA’s object manager and
naming service.

Java’s serialization support, combined with RMI, enables
objects to be saved in binary form, discovered and down-
loaded by an RMI client, and finally unpacked and used.
This ability is particularly useful for distributed planning
and analysis. For example, it will be possible for one analyst
to formulate a network model using many disparate sources
of data, then serialize just that network model and send it to

385
Dynamic, Distributed, Platform Independent OR/MS Applications

another analyst, who could be physically located anywhere.
The second analyst could deserialize the network to exactly
the same state as it was sent, after which any algorithms
could be run on the network.

3. Why Java?
Why have we used Java (with some CORBA) rather than any
of the other technologies discussed in BK? The first answer
is a practical one—we wanted to limit the scope of the
technology that we and our team had to master. Java is
object-oriented, platform independent, and network aware.
It also supports dynamic and distributed computation, in-
gredients that deliver precisely what we need in our prob-
lem domain of real-time military planning.

The second answer is that all our graduate students know
Java and, through their classroom work, are familiar with
object-oriented design and the power of Java and the net-
work. Beginning with the students that entered in the fall of
1996, all master’s students in the Operations Research Cur-
riculum at the Naval Postgraduate School learn Java and use
it in subsequent courses. Because we are educating military
officers for a high-tech information age career, we view the
move to the Internet and Java, “the language of the Inter-
net,” as a strategic curriculum decision to incorporate the
use of networks. Just as important, it is possible to effectively
introduce Java and object-oriented programming to opera-
tions research graduate students, many of whom have a
very limited programming background, in a single course.
Before Java was available, we had considered C11 and had
decided that the cost to teach C11 to all our students was
far greater than the benefits in the curriculum. With Java’s
cleaner design, the cost is far less, and the benefits of using
a good object-oriented language and the Internet are signif-
icant. All master’s students (input over 80 per year) write a
thesis and many have used Java in their research.

The third answer is that the scripting languages associ-
ated with the Web and the security restrictions placed on
Java applets limit the ability of OR/MS applications to
scale-up to the size that many applications require. For the
problem domains in which we work, it is not sufficient to
just demonstrate the technology; we want to design, de-
velop, and validate an architecture for network-based
OR/MS that will support industrial size and industrial qual-
ity applications.

The final and most important reason for Java is that it
contains powerful support for network operations, reflec-
tion, and dynamic loading. These are necessary for con-
structing the loosely coupled components architecture for
our problem domains. As the first major language designed
since the Web was introduced, Java has unique capabilities
to support our work.

Most of our applications do not use the Web; however, the
ones that do show its unique power. Tim Castle and Allan
Washburn are working with us on an application to support
land-based search and rescue (for lost people). They have
built a Markov model of the movement of the individual
that includes a Bayesian update based on the results of the
search parties. We have superimposed a color display of the

probability map over geographic maps to give a visual
display of the state of the search. This application is imple-
mented as an applet that is displayed in a browser and
broadcast over the Web. This allows anyone (searchers,
news media, and family) with a Web connection and a
browser to view the same up-to-date picture that the search
coordinators use.

4. Experience and Perspective
As discussed, most of our experience is in using the Internet,
rather than the Web or browsers. Much, but not all, of the BK
article is based on using the Web (the discussion summa-
rized in BK’s Table II is an exception because it includes Java
applications and RMI). Our experience is heavily influenced
by our problem domain. We are building applications for
planning in which the OR/MS analyst is integrated into a
dynamic, distributed system that must make a sequence of
decisions in a rapidly changing and unpredictable environ-
ment. To contribute to the decision-making process, the
analyst must, in a timely manner, use resources of various
kinds that are spread over a computer network.

The efficiency of Java applications and applets has im-
proved dramatically with the introduction of just-in-time
compilers into the Java virtual machines, both in browsers
and outside of browsers. The usual measure is to compare
performance to C11 code. Current benchmarks show that
Java can be several times slower, although one shows Java
dead even for some very special numerical calculations. We
have done no systematic testing, but we estimate (JDK 1.1,
summer 1998) that Java execution is two times slower than
C11 with a large variance. HotSpot technology, currently
being developed by Sun Microsystems, has the potential to
significantly speed-up Java. The most innovative part of the
HotSpot technology is an adaptive compiler that creates a
profile of the program during execution and recompiles the
program while it is running to relieve bottlenecks (see [4] for
several other ways that are being used to speed up Java
execution). From our perspective, anything from slightly
faster than C11 to several times slower is acceptable be-
cause the notion of time and efficiency in our system is “can
the analysis be completed before the next decision is made.”
Meeting this requirement has less to do with how fast a
numerical algorithm can execute on a specific CPU than
with how quickly the algorithm itself can be identified,
brought into the analysis, and loaded with data. If calcula-
tion speed is important, finding a faster CPU on the network
is as effective as finding a faster program or algorithm.

From our perspective, Java applications with RMI (and
CORBA, if needed) dominate approaches that use the Web
and its associated technologies (for example, scripting lan-
guages) because Web technologies have limited capabilities
that do not scale-up well. It appears to us that Java applica-
tions and RMI offer sufficient dynamic discovery capabili-
ties. Java is adding CORBA capabilities (for example, inter-
face definition language in Java) at a rate that may overtake
Object Management Group, the consortium of over 700 com-
panies that manages CORBA. In addition, Java support of
Structural Query Language queries and Java wrappers for

386
Bradley and Buss

programs written in other languages may limit our need for
other technologies such as CORBA.

5. Final Comments
One of the benefits of a wide-angle overview of an emerging
research field is that it gives other researchers an opportu-
nity to reassess the assumptions that lead to specific design
decisions. We used the work of BK for exactly that purpose
in the summer of 1997 (with an early version of the article)
and in the summer of 1998 (with this version). In both
instances, we were able to use their careful review of the
various options quickly to determine that, for our particular
problem domain, we have made the right choices among the
current alternatives.

The article by BK is provocative because it gives an
OR/MS perspective on the network and the Web and shows
and suggests and hints at the many ways that OR/MS will
be reshaped and reconceived as we use the new capabilities
and absorb the new ideas. Our work demonstrates the
power of the ideas—by using Java applications rather than
applets, we do not use the Web or browsers directly; but it

was the idea and example of the Web (and the artifacts it
spawned, such as Java) that made our work conceivable as
well as possible.

Acknowledgments

The research of the authors was supported by grants from the Air
Force Office of Scientific Research and the Office of Naval Research.
This support is gratefully acknowledged.

References

1. H.K. BHARGAVA, R. KRISHNAN, and R. MULLER, 1997. Decision
Support on Demand: Emerging Electronic Markets for Decision
Technologies, Decision Support Systems 19, 193–214.

2. A.L. BILYEU, 1998. Concept for a Special Operations Planning and
Analysis System, MS thesis, Operations Research Department,
Naval Postgraduate School, Monterey, CA.

3. G.H. BRADLEY and A.H. BUSS, 1998. An Architecture for Dynamic
Planning Systems using Loosely Coupled Components, Technical
Report NPS-OR-98-05, Naval Postgraduate School, Monterey, CA.

4. T.R. HALFHILL, 1998. How to Soup Up Java, BYTE Magazine 23(5),
60–74.

387
Dynamic, Distributed, Platform Independent OR/MS Applications

